CFTR-Adenylyl Cyclase I Association Responsible for UTP Activation of CFTR in Well-Differentiated Primary Human Bronchial Cell Cultures
نویسندگان
چکیده
Chloride secretion by airway epithelial cells is defective in cystic fibrosis (CF). The conventional paradigm is that CFTR is activated through cAMP and protein kinase A (PKA), whereas the Ca(2+)-activated chloride channel (CaCC) is activated by Ca(2+) agonists like UTP. We found that most chloride current elicited by Ca(2+) agonists in primary cultures of human bronchial epithelial cells is mediated by CFTR by a mechanism involving Ca(2+) activation of adenylyl cyclase I (AC1) and cAMP/PKA signaling. Use of selective inhibitors showed that Ca(2+) agonists produced more chloride secretion from CFTR than from CaCC. CFTR-dependent chloride secretion was reduced by PKA inhibition and was absent in CF cell cultures. Ca(2+) agonists produced cAMP elevation, which was blocked by adenylyl cyclase inhibition. AC1, a Ca(2+)/calmodulin-stimulated adenylyl cyclase, colocalized with CFTR in the cell apical membrane. RNAi knockdown of AC1 selectively reduced UTP-induced cAMP elevation and chloride secretion. These results, together with correlations between cAMP and chloride current, suggest that compartmentalized AC1-CFTR association is responsible for Ca(2+)/cAMP cross-talk. We further conclude that CFTR is the principal chloride secretory pathway in non-CF airways for both cAMP and Ca(2+) agonists, providing a novel mechanism to link CFTR dysfunction to CF lung disease.
منابع مشابه
Hao/Cheung/Yip/Ko: Nobiletin Stimulates Chloride Secretion
Background/Aims: Nobiletin, a citrus flavonoid isolated from tangerines, alters ion transport functions in intestinal epithelia, and has antagonistic effects on eosinophilic airway inflammation of asthmatic rats. The present study examined the effects of nobiletin on basal short-circuit current (ISC) in a human bronchial epithelial cell line (16HBE14o-), and characterized the signal transductio...
متن کاملRegulation of CFTR channels by HCO(3)--sensitive soluble adenylyl cyclase in human airway epithelial cells.
CFTR channels conduct HCO(3)(-) in addition to Cl(-) in airway epithelial cells. A defective HCO(3)(-)-transporting function of CFTR may underlie the pathogenesis of cystic fibrosis. In the present study, we have investigated whether a HCO(3)(-)-sensitive soluble adenylyl cyclase (sAC) is functionally coupled with CFTR and thus forms an autoregulatory mechanism for HCO(3)(-) transport in human ...
متن کاملTgf-β1 Inhibits Cftr Biogenesis and Prevents Functional Rescue of ΔF508-Cftr in Primary Differentiated Human Bronchial Epithelial Cells
CFTR is an integral transmembrane glycoprotein and a cAMP-activated Cl(-) channel. Mutations in the CFTR gene lead to Cystic Fibrosis (CF)-an autosomal recessive disease with majority of the morbidity and mortality resulting from airway infection, inflammation, and fibrosis. The most common disease-associated mutation in the CFTR gene-deletion of Phe508 (ΔF508) leads to a biosynthetic processin...
متن کاملControl of basal CFTR gene expression by bicarbonate-sensitive adenylyl cyclase in human pulmonary cells.
The CFTR protein, encoded by the gene whose mutations induce Cystic Fibrosis, is an anion channel devoted mainly to chloride and bicarbonate transmembrane transport, but which also regulates transport of several other ions. Moreover, it is implicated in the cell response to inflammation, and, reciprocally, cftr gene expression is modulated by inflammatory stimuli and transduction pathways. Look...
متن کاملRescue of F508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures by small molecules
Van Goor, Fredrick, Kimberly S. Straley, Dong Cao, Jesús González, Sabine Hadida, Anna Hazlewood, John Joubran, Tom Knapp, Lewis R. Makings, Mark Miller, Timothy Neuberger, Eric Olson, Victor Panchenko, James Rader, Ashvani Singh, Jeffrey H. Stack, Roger Tung, Peter D. J. Grootenhuis, and Paul Negulescu. Rescue of F508-CFTR trafficking and gating in human cystic fibrosis airway primary cultures...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 21 شماره
صفحات -
تاریخ انتشار 2010